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Feedback strategies of a qualitative competitive game between two players can be designed 

such as to influence parameters of a mechanical system to induce chaotic behavior. The purpose 

is to reduce the options and effects of the opponent's strategy. We show it on a case with 

dynamics specified by a nonautonomous Duffing equation with the players represented by 

damping and external forcing, respectively. It seems however that the conclusions can be made 

valid generally. 
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1. Pos ing  the Problem 

As a rule, chaotic behavior of nonlinear mec- 

hanical systems is a phenomenon we would like 

to avoid when designing and using such systems. 

It can destroy a desired degree of stability or at- 

taining of a control objective, say, reaching source 

of target by the system trajectories. Looking how- 

ever from the viewpoint of an opposition to a con- 

trol program that actuates the motion of the sys- 

tem with a specific objective, the chaotic behavior 

may prove a usable tool which, if it did not pre- 

vent the controlling agent from attaining the said 

objective, at least it may destroy the precision of 

doing so (Lee, 1995). We shall make the opposi- 

tion an active player and discuss the case on the 

scalar Duffing-type equation (Awrejcewicz, 1988, 
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Ueda, 1980) 

~+D(q ,  O, u 2) +H(q)---u' (l) 

although our conclusion could easily be augment- 

ed to the multi-dimensional state space. In the 

latter case, eq. (l) becomes a fairly general model 

of an inertiaily decoupled mechanical system. 

Indeed, eq. (l) follows from the Lagrange equa- 

tion of motion with generalized displacement 

q( t ) ,  t>to, toER, ranging in the bounded set 

of constraints Aq and generalized velocity t~(t), 

t>t0,  within the bounded set of velocity con- 

straints ,d,~. The functions, D ( - ) ,  /1"(') represent 

internal forces per inertia, successively non-po-  

tential (Coriolis, gyro, damping) and potential 

(restoring), while u i ( t )  is the control variable 

representing an external force per inertia exerted 

by an actuator with a programmed behavior, 

shaped towards a stipulated objective. The latter 

means a desired pattern of solutions to eq. (1) in 

the phase space Qq~. Such a pattern may, for 

instance be reaching of a certain energy level. 

Obviously the force per inertia u 1 produces a 

non-zero power thus changing the total energy of 
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the system. It's natural opponent is located in the 
internal energy changing (non-potential) force 
D ( . ) ,  controlled by the control uZ(t), t>to. To 
accommodate viscous damping we shall assume 

D(q, O, u 2) =0,  Vq,  u 2 (2) 

Letting v(q) to be the potential energy of the 
system, by definition of the potential forces are 
/ - / (q )=Vw(q) .  To cover v(q) both harmonic 
and anharmonic including trigonometric func- 
tions, we express II(q) in terms of the series 

II ( q) =a+ flqa + ... (3) 

with the higher power terms truncated unless 
specifically mentioned. We can now view eq. (I) 
as the dynamics of a differential game between 
players 1, 2 each with the objective referring to 
a specific qualitative behavior of the motion of 
eq. (1) and each with a control program to be 
designed in order to attain its objective. The first 
program is designed as an external excitation 
sinusoidal in shape with parameters ,4, 0J to be 
adjusted 

u~(t)=Pl[/l(q(t),  (l(t) ), t] (4) 
=A(q, q)s in  wt 

The second players program will generally be 
displacement and velocity dependent: 

uZ( t ) - -PZ(q ( t ) ,  q ( t ) )  (5) 

reducing the function D ( . )  to D(q, 61, u 2) = 
/ ) (q ,  0)- The programs are pi(.)  such that 
ui(t) range in the set of control constraints 
U~: [  ui(t)l<~ti=const, while A ranges in the 
set A : 0</~(q,  q) <A'=const.  Unless otherwise 
stated we will consider the control additive : 

D(q, q, u 2) =d(q,  q )+u  2 (6) 

The total energy of  the system forms the surface 

1 . 2 ,  1 2 ,  l ^ 4 
z=E(q ,  q ) - - ~ - q  - r T  aq ± ~  tzq (7) 

over the region of constraints A = A q  ×A# in the 
phase-space R 2n, with extrema identified with 
the equilibria of eq. (1) by definition of u(q) .  
The Dirichlet stable equilibria correspond to the 

minima and their neighborhood wells A e C A  are 
determined by the restituting condition 

Ae : H(q)q>O (8) 

provided the origin (0, 0) has been moved to the 
equilibrium concerned, see Fig. I. Each two wells 
are separated by the energy threshold where local 
maximum of w(q) interfaces with the corres- 

1 0z. 
ponding minimum of kinetic energy T =  7 

The threshold thus correspond to saddle point 
(unstable) equilibria in A. The energy levels 

! 2 1 2 I E (q, q) = T  0 + 2  aq +-~ Bq '=cons t  (9) 

form the first integral of  the conservative sub- 
system of eq. (1) which serves as a reference 
frame for the motions ofeq.  (1) on A. The thres- 
holds are the levels passing through the unstable 
equilibrium points (q=qe, 0 = 0 )  in A, with the 
lower of the two that enclose each well, defining 
this well i.e., enclosing the set of points (q, q) 
specified by eq. (8). Within a well, at each of the 
levels eq. (threshold inclusive) we have points of  
entry eq. (direction of motion against + V E  or 
exit (opposite direction) of the motions of eq. 
(1), depending on whether the power of the ener- 
gy changing forces 

E(q, q ) = u l q - l d ( q ,  (l)+uZ]q (10) 

balances negatively or positively. For sliding on 
the level (points of contact) E(q, (1)----const and 
the power vanishes. 

Suppose that the external forcing power is li- 
mited to the extent of confining the motions below 

• / B ( , a , ~ )  
z 

q 

Fig. 1 Two energy wells separated by threshold 
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the threshold of a local well, with periodic for- 

cing it is plausible for player 1 to aim at con- 

trolling the motions of eq. (I) towards a target 

limit cycle just inside the threshold. Then, if he 

can make the attractor chaotic and fractal, there 

is a chance of pushing the motions above the 

threshold, out of  the well. To achieve his objec- 

tive he would have to choose suitable values of  

his coefficients/~, co. Obviously his opponent pla- 

yer 2 may use positive damping D(q, q, u z) q> 
0 in eq. (10), to push the motions down the 

energy levels towards the equilibrium, which is 

his target. There will be regions in AE, possibly 

close to the equilibrium where player 2 may 

succeed and regions where he may not, possibly 

for larger amplitudes. These are called the win- 

ning regions for corresponding players. For  in- 

stance, for the case of a = i ,  /~=--0 .6 ,  d = t ~  and 

the programs determined by A:0.1185,  w=0.555, 

u2:0.6t~, Thomspon-Stewart  (1986) show that 

in the basic well there coexists two limit cycles 

about (0, 0): a single valued closed E-level at 

lower amplitudes attainable from small neigh- 

borhood of  (0, 0) which is thus our winning set 

for player 2 and another, chaotic attractor in 

which the peak amplitude varies from one cycle to 

another and may even jump over the threshold 

due to the fractal structure which gives folding 

points along the q-axis  (see Fig. 2). Such at- 

tractor is obviously reachable from another re- 

gion of larger amplitudes which is winning for the 

player 1 and uncontrollable for player 2. 

In the above, the player 1 actually uses chaos to 

attain his objective. Obviously between the two 

winning sets we should have some separating 

Fig. 2 An chaotic attractor 

barrier surface which, if found, makes it possible 

to estimate or even determine such winning sets, 

thus specifying what is usually called the map of  

the game in A for the objectives concerned. The 

qualitative game is solved when such a map is 

found. 

The roles of the players 1, 2 may be inverted, 

i.e., player 1 may find P~(-)  such that, by eq. 

(10), he can generate a single valued limit cycle 

at some level about (0, 0) while the player 2 uses 

negative damping generating self-sustained osci- 

llations opposing the task and forcing the motions 

above the threshold i.e., out of the well A~. 

The two objectives described are just one of  

many pairs of qualitative objectives possible in 

applications of nonlinear models of mechanical 

systems, to which qualitative differential games 

may be used. We consider our case a preliminary 

study of  such usage. 

We need now certain facts from the qualitative 

game theory to specify conditions for solving our 

problem. 

2. The Game Theoretic  Discuss ion  

Let us write eq. (I) in the state format sub- 

stituting £ ( t ) = ( x l ( t ) ,  x2(t)) r, x l=q,  x2=q ,  

and f = ( A ,  f2) T, f l=~/ ,  f 2 : - D ( £ ,  u Z ) - H  
(xl) + u 1. The philosophy of the qualitative game 

requires determining strategies i.e., feedback con- 

trol programs for the players such that each ob- 

jective is achieved no matter what admissible 

strategy is used by the opposition. More formally 

it thus requires an interface between two semi- 

games each expressed by the contingent equation 

x ~ { / ( £ ,  t, y~, u2)l u i } = P i ( £ ,  t) 
(11) 

u l ~  Uj, i, j =  1, 2, i:#j 

We call eq. (11) the semigame for player i, brief- 

ly the / -game meaning that player i is active 

and playing against all options of  player j ,  jm i ,  
expressed by the compact control constraint set 

Uj, j : 2 ,  1, (see Section 1). For  suitable func- 

tions f ( - ) ,  P i ( - ) ,  by Fi l ippov (1977), the eq. 
(11) has through each .~0=~( to )CA absolutely 

continuous solutions ~b(x0, to, ") : R ~ - , A  and 

conversely there is a pair u l (  • , uZ(') such that 
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the corresponding ~b(-) satisfies the so called 

selector equat ion:  ~ ( t ) = f ( ~ b ( t ) ,  u ~, u 2, t ) ,  
t >to. We shall denote the class of such solu- 

tions by X ~ ( ;  °, to). 
Fol lowing our discussion in section 1, the ob- 

jective of t h e / - g a m e  is the capture of  the motions 

ofeq .  (1) in the target T ;  which is a given com- 

pact set in A :  

T'={(x~, x 2 ) ~ A  I E(xx ,  x~) ~_c ~ } 
T2={(x~, xz) ~ A l E ( x l ,  xz) ~_c ~ } 

(12) 

where c z is a small positive constant and c a > 0  

represents the energy threshold : c t =  4 a,2//~. 

Definition 1 The game is strongly i-controllable 

at (~0, to) ~ / ~  × R  for capture in T ~ i f  there is a 

strategy (program) P~( ')  and a constant Tc> O 

such that q5(£ °, to, ") ~ X ~ ( x  °, to) implies 

~(£o, to, t ) E T  ~, V t > t o + T ,  

Let £°(R)  denote the to-family of points (~0, to), 

toUR. The set of all points aS ° in A satisfying 

Definition 1 forms the region of  s t rong / -con t ro l -  

lability for capture in T;,  denoted A~, and any 

subset of  A~ is strongly / -control lable  for cap- 

ture. It is obvious that we must have T i N A ~  (3 

and that by definition, A~ is strongly positively 

invariant under p i  ( .)  • y 0 ~ A  $ ~ ~b (~?0, to, R +) C 

A~. Then also it follows that there is a nonemp- 

ty subset T~ of  TiVIA~ which is positively str- 

ongly invariant under p i ( . )  and is called a cap- 

turing subtarget. There may be many such sub- 

targets, but if a chaotic attractor exists, it must 

belong to one of them. 

Let A6, Tg be two subsets of  A such that 
A~N Tj#=~b and let V i ( . )  : A~--*Rbe a Ct-func - 

tion defining Tc / : 

OTd : V i ( Y ) = c o n s t = v ~  (13) 

and such that 

v ~ : i n f  V ' ( x ) l x ~ O A ~ > v ~  (14) 

Introduce C T ~ = A ~ - T d  and open S i c C T ~  
such that S U { 0 }=  (3. The following theorem 

can be proved by the same argument as used for 

the capture conditions in (Skowronski, 1988). 

Theorem 1 The set A~ is strongly i-controllable 

for capture in T ~ within Td i f  there are two func- 
tions : p i  ( . ) on C Tg, and Vi ( . ) : S i ~ R,  such 

that 

(i) v ' ( ~ )  < v ~ C T g  
(ii) V'(:~) < v ~ x E S i n  T] 
(iii) or each u i = P i ( Y ,  t) 

there is T] < oo such that 

v~- v~ VVi(~) Tf(,g, t, u ~, u z) < 
T/ 

(15) 

for  all uSEUs, j4=i. 

The program Pe may be calculated from the 

immediate corollary : 

Corollary 1 Given ~ CTd,  i f  there is a pair 

~1, ~ z~  U1 × [-72 such that 

A v '  (~)  Ti(:~, t, z~ 1, z~ 2) 
= m i n  max  (V V ~ (Y ) r f (y, t, u ~, u 2) ) 

Ul UJ 

v~-- v~ 
(16) 

then condition (iii) o f  Theorem 1 is met with 

z~=P' (.~, t). 

The second corollary has been proved in 

(Skowronski, 1986). 

Corollary 2 I f  the boundary 3A6 is defined as 
a Vi-level : 

OA~ : V i (£)  =cons t  = v~ > v~ 

given V i ( . ) ,  P;(.), condition (iii) is also neces- 

sary for  A3 being strongly controllable for  capture 
in T i within T2. 

If so, then measuring the distance from 0Td in 
terms of a specified norm V i (aT) we can postulate 

that, given p i ( . ) ,  v~ and thus also 8A~ can be 

pushed away from t~Z0 i as far until eq. (15) is 

contradicted. The latter is obviously qualified by 
the choice of  V i ( . )  and for an arbitrary V i ( . ) ,  
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this is as far as we can go. On the other hand A~ 

is a maximal controllable A~ or a union of such 

sets in A (see Skowronski, 1989). 

How far does A~ stretch? Introduce the semi- 
i - -  i neutral set A N - - A - A c  covered by points where 

Definition 1 is contradicted. Then introduce a 

surface Z ~ subdividing A into two disjoint sets 
A i ~ A ~  called interior and C A i = A - A  i called 

exterior, with the property that for : ~ 0 ~ , i  there 

is P / ( - ) ,  j ~ i  such that ~b(x °, to, R +) A A i = ~ 3  

for all motions of X i ( x ,  to). Such ~,i is desi- 

gnated nonpermeable for player i, briefly / -non-  

permeable. 

Theorem 2 A surface S partitioning A is Z i i f  
there are p i  ( . ) and a Cl-  function VBi(') : D ~-+ 

R, D ( o p e n ) ~ S ,  such that for all ~ ° ~ A  i. 

(i) v~ (~) < vi (,), , ~ S  
(ii) given u~=P~(£, t) 

VV~'( :~)rf( :~,  t ' ,  U ~, /,/2)>0, M u i ~ U i  (17) 

The theorem was proved in (Skowronski, 1986). 

Quite naturally ZiCA~ and there may be many 

of them, but only one that is closest to A~. If 

aA~ is not defined, which is the case when we 

search for it, then we choose Z i closest to the 

target T i (Skowronski, 1987; Arderna, 1989) 

and call it i -semibarr ier  B;. It is convenient if B ~ 

is the boundary aA/. 
Then we may introduce the neutral zone A N =  

A- - (A~UA~) ,  closed if both A~ are open, but 

possibly empty, and define the barrier B = B 1 A  
B z, obviously in AN, and separating Arc, A2c if 

not empty. The barrier does not necessarily parti- 

tion A. Since BiCA~r,  i = I, 2 wherefrom B c A N .  

From the definition of B we conclude immediate- 
ly that it is nonpermeable for  both players and 

unique i.e., there is only one such surface between 

A~c and AZc. 
Any candidate for B, whether provided by 

necessary conditions such as dynamic program- 
ming, Isaac's barrier . . . .  etc., or obtained from an 

educated guess of a practitioner, may be con- 

firmed by using Theorem 2 twice, successively for 

each player i =  1, 2. 

Fig. 3 Hypothetical map of the game 

Fig. 4 Disjoining regions 

In general, the regions A~ may not be disjoint 

AcNAc:q = q3. The winning set for the player i.e., 1 2 

i is defined as W i = A ~  - (A~c0Ac2), i----1, 2. The 

complements of  the union AlcUAZc to A are 

filled up by the so called draw regions, which 

again can be classified (Skowronski, 1987). We 

may now draw a hypothetical map of the game 

shown in Fig. 3 with the barrier reduced to two 

points, or an alternative local picture with dis- 

joining regions A~----- W i, i =  1, 2, shown in Fig. 4. 

3. Mechanical Systems 

We may now return to the motion equation eq. 

( I ) ,  with the energy in eq. (7), the power in eq. 

(10) and the objectives of capture discussed in 

Section 1. Consequently to the latter, we shall 

consider the targets in eq. (12) with the capturing 

subtargets proposed as Z d =  T i, i = l ,  2 of eq. 

(12), both enclosed in the same energy well (see 

Fig. 5). Note that the target T 1 leaves the option 

of the motions escaping Ae and thus tending to 
some limit cycle in the next well. Our discussion 

in this section follows the results by Skowronski 

(1989). 
Choosing V i ( ' ) ,  we may calculate p i  (.) from 

Corollary 1, and using such program, by Corollary 
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7 2 ! 

Fig. 5 Capturing subtargets enclosed in the energy 
well 

2, we may push v6>0 as far from OTg as in eq. 

(15) will hold, the distance measured in terms of  

the chosen V; (aT). Player 2 aims at the bottom of  

the well (0, 0) enclosed by the small capturing 

target OT2 : E(q ,  el) = c  z and chooses V 2 ( £ ) =  

E(q,  el). Condit ion (iii) of Theorem 1 now 

reads:  there is Tc z such that 

E(q,  (1) ~ VZ°--cZ (18) 
- T g  

Thus eq. (16) requires 

m i n m a x  E ( q ,  t~) < vg-cZ u, u~ _ - - - ~ - ~ c  2 (19) 

which is the control condition for player 2 speci- 

fying p z ( . ) .  For  player 1 we start from below 
1 1 the threshold aTc 1 " E ( q ,  ( t )=c  - -~a2/ t~  and 

choose V l ( Y ) = c 2 - E ( q ,  q) so that Vl(~7) at 

the threshold equals c2--c 1. Then eq. (15) be- 

comes 17a(£) = -  I ? 2 ( ~ ) = - - / ~ ( q ,  0) < v~--c~ 
- -  T01 , 

v]<c l, and condition (iii) reads:  there is Tc l 

and such that 

E(q,  Cl) > c~-v~ (20) 
T 2 

accumulating the energy i.e., pushing the motions 
of eq. (1) towards the threshold and above. Con- 

sequently eq. (16) becomes 

m a x  min E ( q, (1) >-c~ - v~ (21) 
ul  U2 - -  T 1 

which is the control condition for player 1 speci- 
fying H i ( . ) .  Note that eq. (18) and eq. (20) are 

z 

F i g .  6 

qualified by T~ z, T2 respectively and thus so 

is the choice of p i ( . ) .  The rate of change of 

Vi (£ )  is bounded by ki(T~, v ~ ' ) - - = l v i 0 - c i ] /  

Tc / and when z~, T~ are given, so is k i and 

p i ( . )  can be exactly calculated. The latter hap- 

pens when T~ and A~ are stipulated. Assume for 

a moment that they are not, as required by Defi- 

nition I and the search for A~. 

Observe that with / :n( . )  satisfying eq. (19) 

close to cOTff we may lift kz>O and there is k~, = 

sup[(vZ-cZ)/T~] for which /~(q,  q ) < 0 ,  i.e., 

for any k2>kZ, we have 

E'(q,  q) ~_0 (22) 

contradicting (iii) expressed in terms of our cho- 

sen VZ( ' ) .  Note that condition (iii) is also nec- 

essary. Thus the contradicting eq. (22) defines 

complement to the maximal A~ i.e., A z, and since 

such complement is closed, it defines also an open 

A~ (see Fig. 6). 

Symmetrically, with p a ( . )  satisfying eq. (21) 

close to the threshold, we may lower the rate 

k l > 0  and find k l ,= in f ( ( c l - v~ ) /T2 )  for which 

E ( q ,  q) >0  i.e., for any kl<kl,  we have already 

/~(q,  t)) _~0 (23) 

contradicting (iii) expressed in terms of  our V 1 

( - ) .  Again since (iii) is necessary, the contra- 

dicting eq. (23) defines the complement to maxi- 
mal A01 i.e., A~¢ and thus A~ (Skowronski 1989). 

The first contradiction eq. (22) gives the can- 

didate E-level for B 2, the second i.e., eq. (23) 

gives such candidate level for B 1. To check B 2 
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we choose V~B (Y) = VI(:~) = c 2 - E ( q ,  q) with 

the same p z ( . )  calculated from eq. (19) with 
k2=k2, so that for eq. (22) Theorem 2 holds. 

Similarly to check B 1 we choose V81 ( . ~ ) =  V 2 

( ~ ) = E ( q ,  q) with the same p l ( . )  calculated 

from eq. (21) with ka=k~. By eq. (23) Theorem 

2 holds again. Thus the semibarriers B i coin- 

cide with the found boundaries OAt, i = l ,  2. It 

follows immediately that the points (q, q ) C A  

where E(q,  q ) = k ,  k2.<k<kl, form the neutral 

set A 2v. This set is a natural locus for the barrier 

B if it exists i.e., when the set specified by E ( q ,  

q)----k forms a single E level, say an unstable 

cycle. But A ~¢ of the above may also accom- 

modate several surfaces 2 'i covering a number of 

unstable cycles and limit cycles, as the semi- 

barriers B 1, B 2 may be located far apart with B 

empty. 
Substituting now eq. (10) and eq. (4) into eq. 

(19) and eq. (21) we specify the control condi- 

tions obtaining for the player 2 : 

max(u20)  > k Z , - d ( q ,  0) q+m,ax(uaO)  (24) 
122 

and for the player 1 : 

max (,~0 sin wt) > kX. + d (q, (1) (1 + m a x  (UZ(l) (25) 
,~ U z 

as in any mechanical system, part of the control 

programs calculated from eqs. (24), (25) will be 

divided by ] 0 t  and blow up above saturation 

level for 0--* 0 i.e., when crossing the q-axis. 

Fortunately this axis is crossed instantaneously 

at all regular points of the phase space, so when 

the controller is switched off ut----0 or left at the 
saturation level u~=const=z~ i suitably close to 

the q-axis  say for I 0 I </~i, the motion will carry 

on over the 0 = 0  point. The constants /3 i may be 

calculated (Skowronski, 1989) but it has been 

proved more practical to pick them up by ex- 

perience during the simulation process. The con- 

trollers that would satisfy eqs. (24), (25) are as 

follows. 

u2sig n 0 > ~ ( - d ( q ,  q)sign 0+z~ ~, [q 1>/~2(26) 

=suitable constant, I 0 l</fl  

and 

> k~. d(q, 0)sign0 ~ ~2 

Asign(qsinc0t) -10sinwtl+ Isinc0tl sinc0t'(27) 
1012_~ 2 

=suitable constant, ]q I<a 2 

In eq. (24) and in the program eq. (26) it is more 

convenient to use the known saturation value z~ 1 

rather than A. for the controller of player 1 we 

then have 

ut ~_ - d ( q ,  O)+z~Zsignc)+z~ 1, 101~_/31 

=sui tab le  constant, I q ]</31 

The above controllers secure the objectives of 

capture, but not necessarily the limiting behavior 

and chaos. That is why eqs. (26), (27) are left as 

inequalities, allowing the design of u z, /1 genera- 

ting the other aims. They may be, in particular 

chosen as constant. This, in our case refers, par- 

ticularly to the program for player 1 which is the 

active controller of the system. Since eq. (27) 

secures negative derivative /~(q,  q) up to reac- 

hing the threshold, from the basic Lyapunov sta- 

bility theorem we learn that the threshold will be 

a stable attractor. Then co, A decide about their 

periodicity and /o r  chaos. 

4. E x a m p l e  

To illustrate our argument we consider the 

subcase of eq. (1) with d = 0 . 1 ,  a = - l ,  /~=1, 

09= 1, modeling a vibrating buckled beam:  

q +  (0.1+u2) O--q + q s=Asin cot 

The negative a establishes the basic equilibrium 

(origin (0, 0)) as an unstable saddle i.e., at the 

threshold between two symmetric neighboring 

wells for negative and positive q, respectively, 
centered at the Dirichlet stable equil ibria qe=l.  
A damped but unforced system uZ--O, ul=--O 
has point attractors at these equilibria. For  sui- 

table values, say uZ=0.15, A=0.191, we find a 
small amplitude limit cycle covered by Z ff and a 

larger amplitude chaotic motion covered by Tc ~ 

(Thompson, 1986). The latter is a steady state 

chaotic attractor which is almost large enough to 
cross the threshold, and some of its foldage 
may do so. The suitable values of u 2 and A, if 
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to be selected constant,  may be discussed in the 

so called, "control  space" O/tu z where for each 

pair A, u 2 a specified phase space portrai t  of  Oq(1 
is prescribed. For  small values of a, either nega- 

tive or positive, the control  space pattern is simi- 

lar as eq. (28) may be shown structurally stable 

(Thompson,  1986). Then we can use the results 

of  Ueda  (1980), who studied it in great detail 

for the case a = 0 .  It follows that there are large 

regions in O/lu 2 for which comput ing limit cycles 

of our  kind are separated by a single unstable 

cycle forming the barrier shown above. 

In order to specify the barrier we let cZ=O 
leading to Vl(q, ( 1 ) = - E ( q ,  (1), V~(q, (1)-- 
E(q ,  (1) in eq. (16). Then  the controls u z, u 2 

may be calculated from the condi t ion  that they 

should be the same for maxu~minu~ and min~ 
1 2 1 ~ ,  I 4 

m a x ~ / ~ ( q ,  (1) and E : ~ - q  --Tq ~-~-q ,  we 

obta in  

t ( Umax if q sin(cot) > 0  

u : ~ 0  if (1 s in(c0t)  < 0  

and 

~ 2  : U2aX 

The contour  plot of  energy function E(q,  dl) for 

the above parameters at several levels is plotted in 

Fig. 7. 

Lyapunov numbers  spectrum in u ~  parame- 

ter space, with U2max=0.2, for two different star- 

t ing points, x ( t 0 ) =  (1.1, 0.0) and (2.5, 1.0)-one 

is near the bot tom of the energy well and the 

other is away from it, is plotted in Fig. 8. One 

can notice that there are two different values in 

the plot for a U~m~x since it was not calculated 
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long enough for convergence. Also Lyapunov 

dimension in U~max parameter space is plotted in 

Fig. 9. In Figs. 10 and 11, the Poincare maps 

projected on q axis in u~a~ space for two different 

starting points are plotted. 

From Lyapunov numbers spectrum, Lyapunov 

dimension plot, and Poincar6 section plot, one 

may identify the characteristics of the trajectories. 

We chose four Ulm~ by inspecting those plots ;  

0.237, 0.241334, 0.24975, and 0.255 which repre- 

sent limit cycles inside the two energy wells, a 

quasi-periodic limit cycle, a large limit cycle jum- 

ping around the two energy wells, and a chaotic 

attractor, respectively. These trajectories and cor 

responding Poincar6 maps are in Figs. 12, 13, 14, 

15, 16, and 17. The typical u 1 and excitation for 
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U~max=0.255 are plotted in Figs. 18 and 19, re- 

spectively. For the case U~mx=0.24975, the au- 

thors' premise that if there is a chance of pushing 

the motions above the threshold, out of the well, 

then the controller can make the system chaotic 

does not hold. 

5. S u m m a r y  

Feedback Strategies of a qualitative competi- 

tive game between two players has been designed 

such as to influence parameters of a mechanical 

system to induce chaotic behavior. The purpose 

is to reduce the options and effects of the op- 

ponent's strategy. We show it on a case with dyna- 

mics specified by a nonautonomous Duffing equa- 

tion with the players represented by damping 

and external forcing, respectively, as an example. 

However, the authors' premise that if there is a 

chance of pushing the motions above the thresh- 

old, out of the well, then the controller can make 

the system chaotic is not satisfied for some cases. 

There are several regions in parameter space 

where this premise does not hold. 
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